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A B S T R A C T

Human functional brain connectivity is usually measured either at “rest” or during cognitive tasks, ignoring life’s moments of mental transition. We propose a different
approach to understanding brain network transitions. We applied a novel independent component analysis of functional connectivity during motor inhibition (stop
signal task) and during the continuous transition to an immediately ensuing rest. A functional network reconfiguration process emerged that: (i) was most prominent
in those without familial alcoholism risk, (ii) encompassed brain areas engaged by the task, yet (iii) appeared only transiently after task cessation. The pattern was not
present in a pre-task rest scan or in the remaining minutes of post-task rest. Finally, this transient network reconfiguration related to a key behavioral trait of addiction
risk: reward delay discounting. These novel findings illustrate how dynamic brain functional reconfiguration during normally unstudied periods of cognitive transition
might reflect addiction vulnerability, and potentially other forms of brain dysfunction.
1. Introduction

Functional organization of the human brain is usually assessed either
at “rest” (quiet introspection without external task demands) or during
tasks requiring goal-directed behavior (Gonzalez-Castillo and Bandettini,
2018). Yet a rigid distinction between rest and directedmental effort fails
to capture the critical periods of mental state transitions that characterize
the cognitive demands of daily life. Rather, everyday life demands
frequent transitions between introspection, when the brain’s default
mode network (DMN) activity is prominent (Raichle et al., 2001; Shul-
man et al., 1997), and goal-directed behaviors supported by “task posi-
tive” networks (Cole et al., 2014; Shine et al., 2017).

At odds with a simplistic rest-task dichotomy is the presence of task-
like connectivity within periods of rest (Chen et al., 2018). “Resting”
connectivity is also different in the immediate wake of mental effort
when compared to rest after a longer period of time (Amico et al., 2019;
Chen et al., 2018; Lewis et al., 2009; Pyka et al., 2009). As opposed to a
simple binary switch from active to resting brain, a sequence of network
functional reconfigurations is likely needed en route to rest (Shine et al.,
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2017). Moreover, the nature of dynamic brain reconfiguration appears
central to higher-order thinking, as better cognitive performance is
associated with small, efficient updates in brain connectivity across states
of rest and task engagement (Schultz and Cole, 2016). By extension, such
dynamic network reconfigurations would also seem a plausible marker of
psychiatric disease liability. This creates a need for new ways of exam-
ining brain network functional reconfiguration in humans.

Here we investigated how brain state transitions and their associated
functional connectomes relate to a family history of alcoholism (FHA).
FHA is not onlyoneof the strongest predictors of developing analcohol use
disorder, but it is also a risk factor for other behavioral disorders (Heiman
et al., 2008; Moss et al., 2007; Nurnberger et al., 2004b; Walters et al.,
2018). Executive brain areas seem a prime target of study, as evidence
indicates that executive control of behavior is both heritable and impaired
in the offspring of alcoholic parents (Dougherty et al., 2015; Gustavson
et al., 2017; Nigg et al., 2004; Young et al., 2009). Similarly, the frontal
brain anatomyand function that undergird executive behaviors have been
shown to be affectedby FHAandpredict bingedrinking (Cservenka, 2016;
Hardee et al., 2014; Porjesz et al., 2005; Whelan et al., 2014).
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A.
n).

ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

mailto:jgonicor@purdue.edu
mailto:dkareken@iu.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2020.116515&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2020.116515
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neuroimage.2020.116515


Table 1
Subject characteristics (N ¼ 54).

FHA positive (n ¼ 23, 9 men) FHA negative (n ¼ 31, 16
men)

Mean (SD) Range Mean (SD) Range

Age 23.04 (�1.64) 21–26 22.35
(�1.58)

21–26

Education (years) 15.32 (�1.25) 13–18 15.23
(�1.20)

14–19

SSRTa (ms) 250 (�48) 157–397 230 (�52) 124–346
AUDITb 10.26

(�6.52)e
2–29 7.26

(�3.92)
1–20

CESDc 8.04 (�5.52)e 1–24 4.57
(�4.21)

0–17

Drinks per week 12.27
(�11.46)e

1.80–51.40 7.12
(�4.91)

1.20–20.80

Alcohol Grams/
Week

TBWd-normalized

3.59 (�2.77)e 0.79–11.77 2.25
(�1.66)

0.25–7.98

a Stop Signal Response Time; time to withdraw a response.
b Alcohol Use Disorders Identification Test.
c Center for Epidemiologic Studies Depression scale.
d Total Body Water.
e FHA significant difference, two-tailed t-test p < 0.05.
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An important aspect of executive function involves efficient changes
in connectivity between mental states (Braun et al., 2015; Gallen et al.,
2016; Schultz and Cole, 2016; Shine et al., 2019). Furthermore, Acheson
et al. (2014) showed that, in a Go/No-Go motor inhibition paradigm,
those with FHA had greater blood oxygenation level dependent (BOLD)
activity during both blocks of mixed Go and No-Go (inhibitory) stimuli,
as well as blocks of Go stimuli alone (each block compared to baseline).
As commented upon by (Colrain, 2015), several of these regions of
greater BOLD activity in the FHA group comprised nodes in the default
mode network (DMN). Although the Acheson et al. study involved
directed cognitive effort, the DMN is a network that is most prominent at
“rest” (Raichle et al., 2001; Shulman et al., 1997). While other expla-
nations for the Acheson et al. findings are possible, they could arise if
those with FHA deactivate less between trials (i.e., during brief periods of
lower response demands). In the context of data indicating that
task-induced BOLD activation magnitude relates to resting connectivity
strength (Mennes et al., 2010), these collective observations led us to
hypothesize that FHA might involve altered connectivity patterns or
reconfiguration processes when transitioning between mental states of
high and low cognitive demand.

We therefore designed a study in which we could test for FHA-related
connectivity differences during the transition from active behavioral
engagement (motor inhibition in the stop signal task; SST) to rest. We
tested our hypothesis using a novel data-driven, connectivity-based in-
dependent component analysis (connICA (Amico et al., 2017)). The re-
sults of this analysis revealed a specific functional reconfiguration
process that: (i) was associated with FHA, (ii) encompassed a number of
brain areas actively engaged by the task, yet (iii) emerged during the
subsequent rest period, (iv) and only transiently during an approximate
3 min period, 15–20 s after task cessation. Critically, (v) the reconfigu-
ration was not present in a pre-task rest scan, or in the final four minutes
of rest. Finally, a post-hoc analysis in a subset of subjects revealed asso-
ciations between the prominence of this functional reconfiguration pro-
cess and a key addiction-related trait behavioral risk: delay discounting
of reward.

These novel findings provide a critical foundation for understanding
how brain functional networks reconfigure in task transitions, and how
this dynamic reorganization relates to potential markers of brain
dysfunction.

2. Methods

2.1. Subject information

All subjects signed an informed consent prior to study procedures, all
of which were approved by the Indiana University Institutional Review
Board. Fifty four subjects (23 positive FHA, mean age¼ 23.0, SD¼ 1.6, 9
men; 31 negative FHA, mean age ¼ 22.4, SD ¼ 1.6, 16 men; Table 1)
completed fMRI. Subjects were classified as FHA positive if they had at
least one first degree relative with a history of alcoholism. Subjects were
classified as FHA negative if they had no first or second degree relatives
with any history of alcoholism. Family history was established by inter-
viewing the subject using the family history module of the semi-
structured assessment for the genetics of alcoholism (SSAGA; (Bucholz
et al., 1994)). Three FHA positive subjects had affected mothers, but
reported that their mothers did not drink during pregnancy. These three
subjects had between two and four years of college education, had no
obvious facial abnormalities as reported by the interviewing technicians,
and had go and stop signal reaction times (see below) within one stan-
dard deviation of the remainder of the sample.

2.2. Stop signal task

The SST was programmed using E-Prime 2.0 software (Psychology
Software Tools Inc., Sharpsburg, PA), and consisted of 54 Go trials and 26
Stop trials. Go trials required a left or right button press on an MRI-
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compatible button box (Current Designs, Philadelphia, PA) to horizon-
tal blue arrows pointing left or right. Subjects were instructed to respond
as quickly and as accurately as possible. Stop trials occurred immediately
after a Go stimulus, and were signaled by a red up-pointing arrow,
indicating the need to inhibit the Go response. An adaptive staircase al-
gorithm adjusted the delay between Go and Stop stimuli in 50 ms in-
crements to target a stop inhibition rate of 50%. Estimated stop signal
response time (SSRT) was calculated by subtracting a subject’s average
stop-signal delay from that subject’s xth percentile Go RT, where x cor-
responds to the stop failure rate (Band et al., 2003). Thus, if a subject
failed to stop on 45% of stop trials, the Go RT subtracted from the average
stop-signal delay would be that of the 45th percentile of the subject’s Go
RT distribution. A mirror on the head coil permitted subjects to view
stimuli as back-projected on a screen at the rear of the scanner bore. Prior
to imaging, subjects briefly practiced the task (8 Go and 7 Stop trials) on a
laptop outside the imaging suite.

2.3. Delay discounting task

Prior to MRI, subjects also performed a delay discounting task on a
laptop outside the scanner. The task was programmed using E-Prime 2.0
software (Psychology Software Tools Inc., Sharpsburg, PA), and consisted
of 60 binary choice trials; 5 trials for each of the 6 delays, duplicated for
$20 and $200 standard amounts. An adaptive staircase procedure
adjusted the immediate amount (initially half the standard) down for
immediate choices and up for delayed choices, converging on the sub-
jective preference for immediate money across delays (Du et al., 2002).
Delays were 2 days, 1 week, 1 month, 6 months, 1 year, and 5 years.
Amount/delay combinations and the presentation side were pseudor-
andomized. The task was not implemented in the first four study subjects,
while data for four additional subjects were excluded for nonsystematic
discounting of >25% deviation (based on (Johnson and Bickel, 2008)),
resulting in a sample of n ¼ 46. There were no significant group differ-
ences in the demographics reported in Table 1 between the n¼ 8 subjects
left out and the n ¼ 46 sample with available delay discounting data.

2.4. MRI acquisition

Subjects were imaged on a 3T Siemens Prisma MRI scanner with a 64-
channel head coil, and with neck elements turned off. For both (rest and
task-rest) functional MRI scans, we employed a multi-band (MB) blood
oxygenation level dependent (BOLD) contrast sensitive sequence as
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detailed in Xu et al., (2013): gradient-echo echo-planar imaging
(GE-EPI), MB slice acceleration factor 3, repetition/echo time TR/TE¼ 1,
200 ms/29 ms, flip angle 65�, 2.5 � 2.5 � 2.5 mm3 voxels, 220 mm �
220 mm field of view, 54 interleaved axial slices. Two BOLD fMRI scans
were performed: 1) 8:07 min (400 vol) scan at rest while subjects fixated
on a central white cross-hair and 2) 12:19 min scan (610 vol) scan con-
sisting of 4 min of the SST performance, followed by a short 12 s tran-
sition period when a slide announced an upcoming 8 min rest. BOLD
volumes during first 7 s of each scan were not considered to allow for
calibrations and MR signal reaching steady state magnetization. There-
fore, BOLD data assessed consisted of two fMRI scans of 8:00 and 12:12
min respectively (Fig. 1A for overview of the sequence of acquisitions).

Two short (16 s) spin echo EPI scans (TR/TE ¼ 1560/49.8 ms, five in
A-P and five in P-A phase direction) with an imaging volume and voxel
size identical to the GE-EPI were acquired immediately before each BOLD
fMRI scan. These phase-reversed spin echo EPI scans provided field map
for correcting EPI geometric distortion (Smith et al., 2004). This pro-
cedure was performed using FSL’s topup/applytopup (Smith et al.,
2004), which yielded improved signal localization across the whole
brain, with the most notable improvements in frontal and temporal areas
(Smith et al., 2004). At the start of the imaging session and preceding the
spin echo EPI scans, subjects received a T1-weighted anatomical MRI
with whole brain coverage using a 3D Magnetization Prepared Rapid
Gradient Echo (MPRAGE) sequence (5:12 min long, 176 sagittal slices,
1.1 � 1.1 � 1.2 mm3 voxels, GRAPPA R ¼ 2 acceleration) per the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI-2) imaging protocol.
2.5. Preprocessing

fMRI data were processed with an in-house developed pipeline based
on Matlab and FSL using state-of-the-art guidelines (Amico et al., 2017;
Power et al. 2012, 2014). These steps included: BOLD volume unwarping
with applytopup, slice timing correction (slicetimer), realignment (mcflirt),
normalization to mode 1000, demeaning and linear detrending (Matlab
detrend), regression (Matlab regress) of 18 signals: 3 translations, 3 rota-
tions, and 3 tissue-based regressors (mean signal of whole-brain, white
matter (WM) and cerebrospinal fluid (CSF)), as well as 9 corresponding
derivatives (backwards difference; Matlab). A scrubbing procedure
censoring high head motion volumes was based on two metrics: Frame
Displacement (FD, in mm), and DVARS (D referring to temporal derivative
of BOLD time courses, VARS referring to root mean square variance over
3

voxels) from Power et al., (2014). Specifically, we used the standardized
DVARS as proposed in Afyouni et al. (Afyouni and Nichols, 2018). We also
used SD (standard deviation of the BOLD signal within brain voxels at
every time-point). The FD and DVARS vectors (obtained with fsl_motio-
n_outliers) were used to tag outlier BOLD volumes with FD > 0.3 mm and
standardized DVARS > 1.7. The SD vector obtained with Matlab was used
to tag outlier BOLD volumes higher than 75 percentile þ1.5 of the inter-
quartile range per FSL recommendation (Jenkinson et al., 2012). Note that
there was no significant difference in the number of censored volumes
between the two FHA groups (p¼ 0.15 for the first resting-only fMRI scan,
p ¼ 0.35 for the second, task-rest scan, two-tailed t-test).

A bandpass first-order Butterworth filter [0.009 Hz, 0.08 Hz] was
applied to all BOLD time-series at the voxel level (Matlab butter and
filtfilt). The first three principal components of the BOLD signal in the
WM and CSF tissue were regressed out of the gray matter (GM) signal
(Matlab, pca and regress) at the voxel level. A whole-brain data-driven
functional parcellation based on 278 regions, as obtained by Shen et al.,
(2013), was projected into each subject’s T1 space (FSL flirt 6dof, FSL flirt
12dof and finally FSL fnirt) and then into native EPI space of each subject.
We also applied FSL boundary-based-registration (Greve and Fischl,
2009) to improve the registration of the structural masks and the par-
cellation to the functional volumes. For the subcortical nodes, we
implemented striatal regions as defined by Mawlawi et al., (2001) and
thalamic regions defined by Behrens et al., (2003). The thalamic regions
were further consolidated from 7 to 4 per hemisphere (pre-motor, pri-
mary motor, and sensory input regions were combined, and occipital and
temporal-projecting regions were combined). This procedure resulted in
a total number of 286 brain regions.

We estimated individual functional connectivity matrices using
Pearson’s correlation coefficient between the averaged signals of all re-
gion pairs. The resulting individual FC matrices were comprised of 286
cortical and subcortical nodes. Finally, the resulting functional con-
nectomes were ordered according to seven cortical resting state networks
(RSNs) as proposed by Yeo et al., (2011) (see insert of Fig. 2B). For
completeness, we added two more networks: one comprised of the
subcortical and one of the cerebellar regions.
2.6. Connectivity independent component analysis (connICA) on family
history of alcoholism (FHA) data

connICA is a novel data-driven methodology that applies independent
Fig. 1. Study design and functional con-
nectivity (FC) analysis scheme. A) Each
subject completed two fMRI scans: a baseline
resting scan (left), with eyes fixated on a
central white cross-hair; a task-rest fMRI scan
(right) comprised a 4 min stop signal task
(Logan and Cowan, 1984) in which the di-
rection of a blue arrow prompted a left or
right button press and a red arrow indicated
the need to withhold the response to a blue
arrow (labels on top of each tile are only
illustrative and did not appear on the actual
stimuli). Within this same scan the task was
followed by a short 12 s intermission (indi-
cated by a gray vertical stripe rectangle)
when a slide announced the upcoming rest
with the printed statement, “The task is over.
Fix your gaze on the cross-hair for the
remainder of the scan”. Subjects then rested
for 8 min and again fixated on a white cen-
tral cross-hair. B) Both fMRI scans were
subdivided into 4 min “static” segments
(blocks), for which we independently esti-
mated whole-brain functional connectomes
and obtained independent connectivity
components using the connICA method.



Fig. 2. Family history of alcoholism differentiating component (FHA-DC). A1) The functional connectivity reconfiguration component extracted by connICA in
the REST POST1 window (i.e., within 4 min after completing the stop signal task). Pairwise associations between brain regions are ordered by resting-state functional
networks as proposed by Yeo et al. (Yeo et al., 2011). A2) For clarity, the same component, depicted after averaging across functional networks, shows prominent
connectivity between the visual and dorsal attention network areas, as well as between default-mode and frontoparietal networks. A3) Group differences in the
individual subject weights associated with FHA-DC, two-tailed t-test between FHA negative and positive groups, p ¼ 0.0023; False Discovery Rate (FDR, (Benjamini
and Hochberg, 1995) adjusted p ¼ 0.04, accounting for the 30 robust components)). B1-B2) Nodal strength (sum over columns of A1, including only: B1) positive
edges or B2) negative edges) of the top 25% regions involved in the identified FHA-differentiating component.
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component analysis (Amico et al., 2017) to extract independent con-
nectivity patterns from individual functional connectomes. connICA’s
output includes: i) an “FC-component” representing an independent
pattern of functional connectivity present across subjects, and ii) each
subject’s weight, quantifying the (signed) component strength or prom-
inence in each individual FC matrix (see Fig. S1). connICA has been
recently used in disentangling connectivity subsystems associated with
levels of consciousness (Amico et al., 2017), Alzheimer’s disease (Con-
treras et al., 2017), as well as in extracting “hybrid” connectivity features
from sets of functional and structural connectomes (Amico and Go~ni,
2018).

2.6.1. Static functional connectivity analyses
We divided both scans into 4-min periods (Fig. 1A), two during the

baseline rest scan and three during the task-rest scans (TASK - first 4 min
[omitting a 12 s slide instruction], REST POST1 - subsequent 4 min, and
REST POST2 window - last 4 min). We then applied connICA separately
in each 4-min block, testing for independent functional components or
“components of interest” that significantly differentiated FHA (Fig. 1B).
A component of interest must be (i) robust (appear in multiple ICA runs)
and (ii) as per our hypothesis, associated with FHA during the task-rest
fMRI scan (which includes SST, REST POST1 and REST POST 2 blocks;
see Fig. 1). Given the non-deterministic nature of the ICA decomposition
into components (Hyvarinen, 1999; Hyv€arinen and Oja, 2000), multiple
ICA runs are required to select the most robust outcomes (Amico et al.,
2017; Hyvarinen, 1999). As in previous work, we accounted for this by
evaluating the robustness of the components (“FC-traits” in (Amico et al.,
2017)) over 100 FastICA runs. The FC-component was considered robust
4

when it appeared in at least 75% of the runs, as defined by a correlation
of 0.75 or higher across runs (Amico et al., 2017).

Before running the connICA algorithm, we applied Principal
Component Analysis (PCA (Jolliffe, 2014)) to perform noise filtering and
dimensionality reduction, as recommended by work in machine learning
(S€arel€a and Vig�ario, 2003) and neuroimaging communities (Calhoun
et al., 2006; Kessler et al., 2014). After this PCA-based preprocessing, we
estimated the number of independent components (Amico et al., 2017;
Calhoun et al., 2009). The two parameters of percent retained variance
from PCA and number of independent components were broadly
explored to find the optimal combination. For each block, we examined
percent variance retained after PCA in the range [75%, 100%], in steps of
5%. Similarly, we evaluated the number of ICA components in the range
[5, 25], in steps of 5. An optimal choice was defined as numRobustcomps
(%) � numICAconvergence (%), i.e. where the number of robust compo-
nents and the convergence of the fastICA algorithm across runs were both
maximized (see Supplementary Fig. S2). As depicted in Fig. S2, the
optimal choice of these two parameters was 85% retained variance in
PCA and 15 independent components. Importantly, family history of
alcohol or any other subject characteristic was not considered during this
evaluation.

2.6.2. Anatomic similarities between a component of interest and an
activation map for the [Stop > Go] BOLD contrast during the stop signal task

We evaluated the spatial overlap between a component of interest
obtained through connICA and brain regions engaged by the stop signal
task as follows: 1) The FC component of interest was summarized by the
(positive) strength of brain regions by summing their positive
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connectivity values, which were assigned a corresponding percentile
rank based on their distribution. 2) We then created voxel-level nodal
strength masks in one-percentile increments from the 50th to the 90th
percentiles. 3) We assessed the overlap between the nodal strength mask
and the activation map ([Stop > Go] contrast, p < 0.05 family-wise error
(FWE), cluster-corrected using a p ¼ 0.001 cluster forming threshold). 4)
We computed the (i) percentage of voxels and (ii) the number of voxels
within both the nodal strength mask and the activation mask. 5) We then
developed a null model to assess overlap between the two masks that
would be expected from chance distributions of the gray matter voxels.
Specifically, for each percentile threshold assessed on the nodal strength
map, the null distribution was created by randomly shuffling the voxels
of the nodal strength mask in the gray matter 1000 times, while keeping
the [Stop > Go] activation mask fixed.

2.6.3. Dynamic functional connectivity analyses
To refine the estimate of when any components of interest emerged,

we employed a standard rectangular sliding window approach with four
different window lengths (60, 75, 90 and 120 s, sliding in 6 s increments)
and extracted dynamic functional connectomes (dFC) in each window.
For every window we ran connICA using fixed parameters from the static
case, specifically: 100 runs, 75% criterion for robust independent com-
ponents, 85% PCA variance retained, 15 ICA components (see previous
section for details). This same procedure was repeated 25 times in a leave-
two-out fashion (one subject per group, one FHA negative and one FHA
positive), to diminish the influence of possible outliers. For each identi-
fied component of interest, we proceeded as follows. For each sliding
window (and for each leave-two-out run), the component of interest was
correlated with the dynamic robust functional components found during
both fMRI scans (i.e., both baseline rest and task-rest scans). The inclu-
sion of both scans was needed to show that the component of interest was
specific to the task-rest scan (i.e., not present during the baseline rest). To
capture the dynamics of a component of interest along the course of the
two fMRI scans, the best-matching dFC component (i.e. the one with the
highest correlation in absolute value with the static component of in-
terest) was reported within the sliding time window. Similarity between
components was measured by a Pearson’s correlation coefficient be-
tween the (vectorized) full connectivity profiles.

3. Results

3.1. FC component derivation

We employed an innovative data-driven independent component
analysis of functional connectomes (connICA (Amico et al., 2017), also
see Fig. S1) on fifty four subjects (23 with at least one first degree relative
with alcoholism, 31 with no first or second degree relatives with alco-
holism; see Table 1). In the “static” connICA step, we evaluated each of
the five fMRI blocks (i.e. REST PRE1, REST PRE2, SST, REST POST1,
REST POST2, each 4-minute long, see Fig. 1B and Methods for details).
The aim was to search for a functional connectivity (FC) signature
associated with family history of alcoholism (FHA) that we hypothesized
would manifest solely during the post-task resting block. The procedure
can be summarized as follows (see Methods section for details): 1) We
first determined the optimal number of robust independent components,
which turned out to be 15 for this dataset (see Fig. S2 caption for details).
2) Only those components that satisfied the robustness criterion were
tested for associations with FHA. 3) The sole component found to be
associated with FHA was then used in a sliding-window analysis to better
characterize when it emerged and disappeared.

During the task-rest scan, connICA extracted 30 robust components:
12 during the SST, 11 during REST POST1 (see Figs. S4) and 7 during
REST POST2. Among those, the static connICA data-driven analysis
(Fig. 1B) resulted in a single component in REST POST1 that distin-
guished the FHA groups, as evident in group differences of the compo-
nent weights. These weights were significantly lower in the FHA positive
5

subjects (two-tailed t-test, uncorrected p ¼ 0.0023; false discovery rate
(FDR, (Benjamini and Hochberg, 1995)) adjusted p ¼ 0.04, accounting
for the 30 robust components; Fig. 2A3), indicating that they had a
diminished presence of this component.

The component emerged only during the 4 min rest following the task
(i.e., REST POST1 block, Fig. 1) and was absent in the SST block and
other three resting state blocks (i.e. REST PRE1, REST PRE2 and REST
POST2). This FHA-Differentiating Component (FHA-DC) predominantly
encompassed functional connectivity between the visual and dorsal
attentional areas, and between associative visual areas and default-
mode/fronto-parietal networks (Fig. 2A1-A2, Fig. 2B1-B2). Specifically,
FHA-DC showed associative visual areas positively coupled with dorsal
attentional cortices, as well as negatively coupled with default-mode/
fronto-parietal networks (Fig. 2A1-A2, Fig. 2B1-B2). We repeated this
analysis after excluding the three FHA positive subjects whose first de-
gree relatives were mothers with alcoholism (i.e., despite subject reports
to the contrary, to rule out any possible effect of significant fetal alcohol
exposure). The FHA-DC remained present in the REST POST1 block
(FHA-DC similarity with full (n ¼ 54) sample of r ¼ 0.9).

To assure that the FHA-DC component found through connICA was
not dependent on the selected number of independent components
(estimated to be 15 in this manuscript, see also Fig. S2), we tested for the
presence of the FHA-DC across different numbers of derived components
(from 11 to 20 in steps of 1; 100 realizations for each number of com-
ponents evaluated). The component was identified (r > 0.95) for more
than 80% of the realizations (see Fig. S3 for details).

3.2. FC component predictors

To better understand this functional reconfiguration component, we
performed a multi-linear regression analysis to predict FHA-DC weights
based on four FHA-related predictors. Specifically, FHA group member-
ship, and three variables on which FHA groups differed: CESD scores
measuring depressive symptoms, AUDIT scores reflecting alcohol use
disorder symptoms, and recent self-reported drinking as assessed by
grams of alcohol per week normalized by total body water to account for
sex differences (Fig. 3A-B-C, also see Table 1). Four nuisance variables
were also included to account for any potential effects of age, sex, head
motion (number of scrubbed volumes, see Methods for details), and stop
signal response time (SSRT, in milliseconds) to control for individual
differences in motor inhibition during SST. In the multilinear model, sex
was a significant effect (p ¼ 0.02, Fig. 3A), while depression scores
(CESD) showed trend-level significance (p ¼ 0.058, Fig. 3A). Notably,
after accounting for these factors, the between group difference in the
FHA-DC was also a significant predictor of the multi-linear regression
model (p ¼ 0.0011, Fig. 3A). The linear relationship between the actual
and predicted weights explains about 45% of the variance in the FHA-DC
individual weights (Fig. 3B), with well-behaved residuals. Specifically,
the residuals are symmetrically distributed, tending to cluster around 0,
and within 2.5 standard deviations of zero (Fig. 3C).

3.3. Anatomic similarities between the FC component and stop signal task
functional anatomy

To assess spatial overlap between brain regions active during SST
(e.g., responses to Go and correct Stop trials; see Fig. 1A and Methods)
and the FHA-DC subsystem observed during the transition to rest, we
used trial-specific responses during SST (voxel-wise t-statistic maps, FWE
cluster-corrected at p < 0.05, p ¼ 0.001 cluster-forming threshold) and
the top 25% most prominent brain “hubs” (in terms of positive nodal
strength, Fig. 2B1) in FHA-DC. Specifically, the anatomic hubs of FHA-DC
cover, on average, 18% � 1% standard error (SE) of the Go trials’ acti-
vation (Fig. 4B1, yellow bars); the Stop trials’ activation coverage is 29%
� 1% SE (Fig. 4B2, yellow bars). Notably, the overlap is most extensive
for the Stop compared to Go trials contrast (Fig. 4A3, also see (Kareken
et al., 2013)). Particularly, the [Stop > Go] activation map coverage is



Fig. 3. FHA-DC individual weights predictability by family history of alcoholism, after accounting for possible confounds. A) Additive multi-linear regression
model with predictors sequentially introduced in the order of: age, sex, head motion (number of scrubbed volumes), stop-signal response time (SSRT), AUDIT score,
normalized drinking (see Methods), depression score (CESD), and FHA group membership. Significant predictors are indicated by one or two asterisks (p < 0.05 and p
< 0.01, respectively). B) Scatter plot of the subject weights (average across connICA runs) associated with the extracted FHA-differentiating component versus the
subject weights predicted by the final multi-linear regression model that includes all eight predictors in (A). Blue circles represent individual weights for the FHA
negative group, red triangles represent individual weights for the FHA positive group. Dashed black line represents the identity line. C) Scatter plot of the standardized
residuals versus the predicted subject weights associated with the FHA-DC for the multi-linear model shown in (A) (also see Methods for details).
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43% � 2% SE (Fig. 4B3, yellow bars). Furthermore, additional analyses
spanning a wide range of nodal hub strengths (50th to 90th percentile
rank) showed that the overlap between the FHA-DC and the [Stop > Go]
activation map exceeded chance as defined by a spatial null model (see
Fig. S5 and Methods for details on the null model).

Most importantly, the stop signal activation maps in each subject are
computed in SPM12 during the SST block and derived using a priori
general linear model-based analyses of the BOLD response modeled with
a standard hemodynamic response function, completely independently
of the connectivity analyses. Furthermore, the FH group effects assessed
with independent two-sample t-tests in SPM12 showed no differences
(peak voxel p < 0.05, family wise error (FWE)-corrected for multiple
comparisons across the whole brain at a cluster-forming threshold of p ¼
0.001) in BOLD activation for each of the reported SST contrasts (Go,
Stop, and Stop > Go). Also note that the applied thresholds for both SST
activation and nodal strength connectivity maps emphasize the most
prominent brain regions in both analyses, which lends an additional
credence to the observed overlap between task activation and the
anatomic distribution of the FHA-DC.
3.4. Dynamic connICA analysis

Of particular interest was the fact that, although the major hubs in the
FHA-DC encompass brain circuitry that was strongly elicited by the SST,
this component emerged only in the subsequent 4 min of rest (i.e., REST
POST1). That is, the FHA-DC did not manifest during the task, but well after
the task-induced hemodynamic response has decayed. To narrow the
temporal dynamics of the FHA-DC in REST POST1, and determine if it was
specific for that time period, we ran a post-hoc connICA analysis with a
finer temporal resolution (2 min sliding window rather than “static” non-
overlapping 4 min intervals) across both fMRI scans. Consistent with the
static results, the FHA-DC was absent during the baseline rest (Fig. 5A),
began only after task completion, and lasted transiently for approximately
3 min (Fig. 5B). These findings suggest that the connectivity component
sensitive to differences in FHAoccurred as subjects switched from the task
itself en route to a state of quiet rest. We also explored shorter sliding
windows and found the FHA-DC peak to be present, albeit less promi-
nently, for 90 and 75 swindowdurations before fading at the 60 swindow
duration (Fig. S6). The temporal (i.e., onset and duration) and spatial (i.e.,
overlapwith regions in a preceding task) characteristics of this component
suggest its involvement in functional reconfiguration of the brain net-
works in the transition from cognitive effort to rest.
6

3.5. Relationship to impulsivity

Finally, we explored the extent to which behavioral impulsivity— a
key feature of addiction risk (Amlung et al., 2017; Bickel et al., 2007)—
related to the FHA-DC. Specifically, a subset of subjects (n¼ 46) had data
available from a delay discounting paradigm, which quantifies subjects’
devaluation of money as a function of delay to receipt. This “reward
impatience” is a phenotype common to various addictions (Amlung et al.,
2017; Bickel et al., 2007) and longitudinally predicts drug use (Fernie
et al., 2013) and treatment outcomes (MacKillop and Kahler, 2009;
Stanger et al., 2012). The area under the delay discounting curve (AUC)
was significantly correlated with the FHA-DC weights (r ¼ 0.35, p ¼
0.018; Fig. S8C), such that greater delayed reward preference
(“patience”) correlated with more of the FHA-DC trait. When entered into
the additive multi-linear regression model, the FHA-DC remained sig-
nificant; the AUC from the delay discounting curve remained significant,
as well (p ¼ 0.034; Fig. S8D).

4. Discussion

Alcoholism is highly prevalent (Grant et al., 2015) and few affected
receive treatment (Cohen et al., 2007); after treatment, drinking relapse
remains clinically significant (Anton et al., 2006; Schneekloth et al.,
2012). Understanding brain-related vulnerabilities is thus important to
prevention and public health, especially given alcoholism’s comorbidity
and joint risk with other mental illness (Walters et al., 2018).

Prior research of how FHA affects brain connectivity is not extensive,
with past work using a priori seed regions (Cservenka et al., 2014) or
seed-based analyses of data collected during cognitive tasks (Herting
et al., 2011; Weiland et al., 2013; Wetherill et al., 2012). These data
suggest that FHA may well affect reward and frontal circuit connectivity,
as evident from related work (Cservenka, 2016). Broader analyses of
whole brain regional network connectivity from resting state studies are
less common, but also suggest altered frontal and dorsal premotor and
sensorimotor connectivity between those with and without FHA (Holla
et al., 2017; Vaidya et al., 2019).

We took a different approach. Rather than trying to distinguish be-
tween binary states of rest or cognitive task-related connectivity, we
hypothesized that a transitional period between cognitive effort and rest
might be more sensitive to FHA. Furthermore, we used a recently pro-
posed, novel data-driven approach (Amico et al., 2017) to decompose
whole-brain functional connectomes into independent components
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driven by inter-subject variability (Fig. S1). This allowed us to isolate
functional patterns sensitive to subject characteristics, or other behav-
ioral or genetic variables— in the present case, the FHA-DC (Fig. 2,
Fig. S4).

The result was a transient (approximate 3-minute long, Fig. 5)
component of connectivity (Fig. 2) that emerged only after the task
performance was completed. Those with FHA showed reduced presence
of this functional brain reconfiguration, even after accounting for po-
tential nuisance variables (age, sex, task performance, motion) and fac-
tors on which the FHA groups differed (depressive symptoms, recent
drinking, drinking related problems; Fig. 3). Most importantly, had the
analysis tested only for differences within the resting state scans (prior to
the task, or in a separate resting state scan some minutes after task
completion), or within the task period, this group difference would not
have been detected.

Given the anatomic overlap with brain regions involved in the task
(Fig. 4), the data also suggest that areas most active during the stop signal
task (visual and attentional networks) remain mutually engaged several
minutes after the task, with this functional coupling diminishing as
subjects resume an introspective rest state (Fig. 5). This brain network
reconfiguration process is less harmonized and significantly attenuated
in FHA positive subjects (see weights in Fig. 2A3).

Other anatomic features of the FHA-DC included prominent within-
network connectivity in the visual system, as well as negative connec-
tivity between the visual network and ventral attention, limbic, fronto-
parietal, and default mode network areas. Recent studies using group ICA
to identify functional connectivity networks find that in comparatively
older individuals with more severe alcohol-related problems there is
decreased functional connectivity in visual, sensory, and motor areas
(Vergara et al. 2017, 2018). Similarly, machine learning can differentiate
Fig. 4. Spatial overlap of brain regions engaged during stop signal task and top 2
SST responding regions to (A1) successful GO trials, (A2) successfully inhibited Sto
statistic, voxel-wise FWE cluster-corrected at p < 0.05, p ¼ 0.001 cluster-defining thr
including positive edges only) of the FHA-DC. The spatial overlap between BOLD
frontoparietal and lateral occipito-temporal regions (yellow overlay). (B1-B3) Histog
bars) overlap with the SST activation maps in (A1-A3). The [Stop > Go] contrast, wh
right tails of the histogram, where the nodal strength of the FHA-differentiating comp
Axial slices (“z-slices” in the figure, in mm) indicate Montreal Neurological Institute
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alcohol use severity using connectivity features between sensorimotor,
default mode, salience, and auditory networks (Fede et al., 2019). Insofar
as FHA is a prominent risk for alcoholism, both these current data and
findings from other whole brain connectivity studies (Holla et al., 2017;
Vaidya et al., 2019) suggest that some of these network features may
precede alcohol use.

To our knowledge, this is the first evidence that a brain-based
endophenotype of FHA affects FC patterns in the dynamic transition
from task engagement to rest. Elsewhere, however, the nature of net-
works’ functional reconfiguration appears to play a prominent role in
both cognitive shifts, as well as level of cognitive ability (Schultz and
Cole, 2016; Shine et al. 2017, 2019; Shine and Poldrack, 2018). In this
study, we present evidence that such a dynamic reconfiguration in the
task-rest transition may be evident in familial risk for alcoholism.

Of particular note, a separate robust “resting-state network-like” (RSN-
like) connectivity component (Fig. S4, Fig. S7) emerged across all fMRI
blocks that was fundamentally distinct from the FHA-DC component.
While this RSN-like component explained an expected large amount of
variance (more than 20% of the variance in all blocks), it did not differ-
entiate between FHA groups. This pervasive RSN-like component can then
be viewed as the “resting-state core”, as found in similar, recent studies
(Amico et al., 2017; Cole et al. 2014; Contreras et al., 2017), co-occurring
in parallel with many other independent connectivity processes (such as,
in this case, the FHA-DC). This finding emphasizes the importance of
connectivity decomposition to isolate other important processes from the
predominant underlying connectivity pattern.

There are some technical considerations in understanding these data.
This transitional connectivity reconfiguration was apparent using inter-
mediate and longer sliding window durations (75–120 s, Fig. 5 and
Fig. S6). This might be related to two main factors: the functional
5% nodal strength positive edges in the FHA-DC during REST-POST1 block.
p trials, (A3) the successful Stop > Go trials BOLD contrast (green overlay, t-
eshold). Red represents the most prominent regions (top 25% in nodal strength,
activation and the anatomic distribution of the FHA-DC is most prominent in
ram of the distribution of FHA-DC voxels that do (yellow bars), and do not (gray
ich depicts highly engaged brain regions, overlaps the most and occurs along the
onent is greatest (red dashed lines indicate 75% nodal strength threshold; Thr).
(MNI) coordinate values.



Fig. 5. Dynamics of the FHA-DC during both fMRI scans. 4A-4B). We ran connICA on each 120 s sliding window during the baseline resting scan (A) and task-rest
fMRI scan (B). The presence of the component (as reflected by Pearson’s correlation coefficient, r) includes all subjects, regardless of the FHA status. The best matching
correlation between the dynamic FC-component and the “static” FHA-DC (left inset, from Fig. 2A3) is shown across each sliding window centroid. Matching between
components was measured by Pearson’s correlation coefficient between the (vectorized) connectivity profiles. Vertical dashed lines indicate the separation between 4-
minute “static” blocks (Figs. 1 and 2). Shaded gray bars indicate standard deviation across 25 bootstrap runs (see Methods for details). Blue dots indicate dynamic
functional connectivity windows during which FHA groups significantly differ (p < 0.05), starting approximately 20 s after task cessation, and lasting for about 3 min,
with an average peak correlation with the FHA-DC static result of 0.85 � 0.15. Note the absence of significant correlations (on average 0.15 � 0.05) between the
originally extracted FHA-DC during REST POST1 and connectivity during the baseline resting scan as assessed using the sliding window.
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reconfiguration process could have a characteristic time span (Telesford
et al., 2016), and/or the functional connectivity data assessed here could
possess noise characteristics that make it difficult to resolve the con-
nectivity pattern at time windows shorter than 75 s (Hindriks et al.,
2016). We also examined the dynamics using one particular brain par-
cellation scheme to define the elemental nodes for network analysis.
Future studies will need to investigate these factors in more detail, with
different task designs, and delve deeper into behavioral (cognitive,
emotional) correlates of both the “after-task” reconfiguration, as well as
transitional periods from rest to task.

Finally, the question remains as to what this transitional network
reconfiguration process might precisely reflect. Two variables were
significantly (p < 0.05) associated with the subjects’ individual weights
of the FHA-DC: biological sex (Fig. 3A), and delay discounting behavior
(n¼ 46 sample, see Fig. S8); a third (depression scores) was significant at
a trend level (p< 0.06). All three variables relate to alcoholism. Despite a
recent narrowing in prevalence, alcoholism remains more common in
men (White et al., 2015), who had a significantly smaller FHA-DC
(Fig. S8). While both family history of alcoholism and delay discount-
ing are potent risk factors and equally heritable (Anokhin et al., 2011;
Kaprio et al., 1987; Nurnberger et al., 2004a), FHA positive subjects are
not reliably more impulsive than FHA negative subjects (Petry et al.,
2002). This suggests the possibility of a low-impulsivity protective factor,
similar to high dopamine receptor availability (Volkow et al., 2006) in
unaffected FHA positive, which may mediate this variability. FHA is also
associated with risks for depression (Nurnberger et al., 2004b), with
depression scores in this sample rising with less of the trait, mirroring the
FHA pattern. Given the anatomic similarity between the stop signal task
activation and the identified FHA-DC, it is also tempting to speculate that
the transient network reorganization process could reflect an “attentional
switch” that aids in returning the brain to an introspective-state. Future
research will need to parse these potential associations and functions.

5. Conclusions

A functional connectivity pattern transiently emerged as subjects
shifted from an active behavioral state to quiet rest. This functional
subsystem is reduced in FHA positive subjects, and primarily involves
8

visual, default-mode, and attentional networks, overlapping anatomi-
cally with structures active during the stop signal task. This novel finding
suggests that brain endophenotypes of alcoholism (and potentially other
kinds of behavioral disorders) may appear in brain network interactions
while individuals transition away from external world engagement. The
approach holds promise for understanding normal brain function, and
more broadly, risk markers for psychiatric illness (Buckholtz and
Meyer-Lindenberg, 2012).

Code availability

The connICA code (in MATLAB) used for this analysis is freely
available at the CONNplexity Lab website: https://engineering.purdue
.edu/ConnplexityLab/publications.
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